Università degli Studi di Roma 3 ArcA diA
Archivio Aperto di Ateneo

ArcAdiA >
Tipologia di Documenti >
T - Tesi di dottorato >

Please use this identifier to cite or link to this item: http://hdl.handle.net/2307/408

Title: Multiscale techniques for nonlinear difference equations
Authors: Scimiterna, Christian
Tutor: Ragnisco, Orlando
Keywords: integrable systems
partial difference equations
nonlinear discrete systems
perturbative techniques
multiscale reduction
integrability test
Issue Date: 3-Feb-2009
Publisher: Universit√† degli studi Roma Tre
Abstract: The aim of this thesis is the development of a multiscale reductive perturbation technique for discrete systems, that is systems described by partial difference equations. A guiding principle in such a programme should certainly be the requirement, if one starts from an integrable model, to maintain this integrability property for the reduced models. So, if for an integrable system the reduced equations should always be at all perturbative orders integrable (a member of an integrable hierarchy),
URI: http://hdl.handle.net/2307/408
Appears in Collections:X_Dipartimento di Fisica 'Edoardo Amaldi'
T - Tesi di dottorato

Files in This Item:

File Description SizeFormat
Tesi.pdf785.05 kBAdobe PDF

This item is protected by original copyright

Recommend this item

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Università degli Studi RomaTre SBA - Sistema Bibliotecario di Ateneo ICT support by CINECA