Università degli Studi di Roma 3 ArcA diA
Archivio Aperto di Ateneo

ArcAdiA >
Tipologia di Documenti >
T - Tesi di dottorato >

Please use this identifier to cite or link to this item: http://hdl.handle.net/2307/600

Title: Asymptotic analysis for a singularly perturbed Dirichlet problem
Authors: Petralla, Maristella
Tutor: Esposito, Pierpaolo
Issue Date: 10-May-2010
Publisher: Università degli studi Roma Tre
Abstract: Let us consider the problem −∆u + λV (x)u = up in Ω, u = 0 on ∂ Ω, where Ω is a smooth bounded domain, p > 1, V is a positive potential and λ > 0. We are interested in the regime λ → +∞, which is equivalent to a singularly perturbed Dirichlet problem. It is known that solutions u must blow up as λ → +∞, and we address here the asymptotic description of such a blow up behavior. When the ”energy” is uniformly bounded, the behavior is well understood and the solutions can develop just a finite n
URI: http://hdl.handle.net/2307/600
Appears in Collections:X_Dipartimento di Matematica (fino al 31/12/2012)
T - Tesi di dottorato

Files in This Item:

File Description SizeFormat
Asymptotic analysis for a singularly perturbed Dirichlet problem.pdf866.7 kBAdobe PDF

This item is protected by original copyright

Recommend this item

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Università degli Studi RomaTre SBA - Sistema Bibliotecario di Ateneo ICT support by CINECA