Università degli Studi di Roma 3 ArcA diA
Archivio Aperto di Ateneo

ArcAdiA >
Tipologia di Documenti >
T - Tesi di dottorato >

Please use this identifier to cite or link to this item: http://hdl.handle.net/2307/601

Title: Geometry and combinatorics of toric arrangements
Authors: Moci, Luca
Tutor: De Concini, Corrado
Issue Date: 26-Mar-2010
Publisher: Università degli studi Roma Tre
Abstract: A toric arrangement is a finite set of hypersurfaces in a complex torus, each hypersurface being the kernel of a character. In the first chapter we focus on the case of toric arrangements defined by root systems: by describing the action of the Weyl group, we get precise counting formulae for the layers (connected components of intersections) of the arrangement, and then we compute the Euler characteristic of its complement. In the second chapter we introduce a multiplicity Tutte polynomial M(
URI: http://hdl.handle.net/2307/601
Appears in Collections:X_Dipartimento di Matematica (fino al 31/12/2012)
T - Tesi di dottorato

Files in This Item:

File Description SizeFormat
Geometry and Combinatorics of toric arrangements.pdf737.31 kBAdobe PDF

This item is protected by original copyright

Recommend this item

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Università degli Studi RomaTre SBA - Sistema Bibliotecario di Ateneo ICT support by CINECA